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Abstract. Due to the impressive results on semantic textual similarity
(STS) tasks, unsupervised sentence embedding methods based on con-
trastive learning have attracted much attention from researchers. Most of
these approaches focus on constructing high-quality positives, while only
using other in-batch sentences for negatives which are insufficient for
training accurate discriminative boundaries. In this paper, we demon-
strate that high-quality negative representations introduced by adver-
sarial training help to learn powerful sentence embeddings. We design
a novel method named AdCSE for unsupervised sentence embedding.
It consists of an untied dual-encoder backbone network for embedding
positive sentence pairs and a group of negative adversaries for training
hard negatives. These two parts of AdCSE compete against each other
mutually in an adversarial way for contrastive learning, obtaining the
most expressive sentence representations while achieving an equilibrium.
Experiments on 7 STS tasks show the effectiveness of AdCSE. The supe-
riority of AdCSE in constructing high-quality sentence embeddings is
also validated by ablation studies and quality analysis of representations.

Keywords: Sentence embedding · Contrastive learning · Adversarial
training

1 Introduction

Sentence embeddings are used successfully for a variety of NLP applications such
as semantic similarity comparison [10], sentence clustering [26], and information
retrieval [23]. As a result, plenty of methods have been proposed and obtained
high-quality sentence representations with additional supervision [8,16,25]. How-
ever, it is costly with human annotation and unavailable in real-world applica-
tions.
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Fig. 1. A toy example of positives and negatives in contrastive learning where we
bolded the same words as S1 in the other sentences. S1 is the input sentence; S2 is a
positive sentence of S1 obtained by replacing synonyms; S3, S4 and S5 are negatives of
S1, respectively. Among them, S3 and S4 are randomly sampled sentences while S5 has
a higher word coverage with S1 compared to them. Thus, we take S5 as a high-quality
negative of S1 for example.

Existing unsupervised sentence embedding methods with a contrastive objec-
tive have drawn much attention from researchers due to their impressive results
on the semantic textual similarity (STS) tasks [6,12,17,29]. The main idea
of contrastive learning is to pull semantically close neighbors (or ‘positives’)
together and push apart non-neighbors (or ‘negatives’) [13].

How to construct positives and negatives for the given sentences is the key
point of using contrastive learning in an unsupervised manner. Following this
idea, recently developed methods, including ConSERT [29] and SimCSE [12],
focus on constructing high-quality positives for the input sentences. ConSERT
explores four different data augmentation strategies to generate positive views.
SimCSE with an unsupervised manner applies the standard dropout twice as
minimal data augmentation to compose positive pairs. For negatives, they only
use all other sentences from the same batch where sentences are randomly sam-
pled. This ignores that the quality of negatives also plays an important role in
contrastive learning. Taking sentences in Fig. 1 as an example.

Example 1. It is easy for sentence embedding models to distinguish S3 and S4

as the negatives of S1. However, S5 is difficult to distinguish from S1 due to its
high word coverage with S1. It is referred as a hard negative of S1.

In general, hard negatives are more related to the input sentence in semantics
compared to randomly sampled negatives. To build expressive sentence embed-
dings, we do not consider generating or sampling negative sentences from the
input sentences. Instead, we directly obtain negative representations in embed-
ding space by adversarial training.

In this paper, we design AdCSE: Adversarial Method for Contrastive Learn-
ing of Sentence Embeddings, which consists of an untied dual-encoder backbone
network and a group of negative adversaries:

– Backbone network : most of the existing methods utilize two encoders with
shared parameters as their backbone for embedding. Instead, we adopt an
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untied dual-encoder as the backbone network to embed the input sentences
and their corresponding positives.

– Negative adversaries: for unsupervised training hard negatives, negative
adversaries are utilized to challenge the discriminative ability of backbone
network by adversarial training.

With a contrastive learning objective, these two parts of AdCSE alternately
update their parameters through adversarial training. When they reach equilib-
rium, the most expressive sentence embeddings will be obtained.

Our main contributions can be summarized as follows.

– We design a novel unsupervised method, named AdCSE, to build high-quality
sentence embeddings with a contrastive learning objective.

– We improve the quality of negatives by introducing adversaries to an untied
dual-encoder in contrastive learning framework. Expressive sentence embed-
dings are obtained by adversarial training between hard negatives and posi-
tives.

– We evaluate AdCSE on 7 STS tasks. Empirical results demonstrate the effec-
tiveness of AdCSE over many competitive baselines. Additionally, fine-grained
analysis such as embedding quality analysis and case study further validates
its superiority in constructing powerful sentence embeddings.

The rest of this paper is organized as follows. Sect. 2 presents a comprehensive
review of the related work. In Sect. 3, we discuss the critical techniques of the
proposed model AdCSE. By comparing with many competitive baseline methods
on STS tasks, the superior performance of AdCSE is demonstrated in Sect. 4.
In Sect. 5, we get deep insight into AdCSE with further analysis. Finally, we
conclude our work in Sect. 6.

2 Related Work

Our work is related to the existing research on sentence embedding and con-
trastive learning. We introduce the related work briefly below.

2.1 Sentence Embedding

Previous methods for sentence embedding include two main categories: (1) super-
vised learning with labeled sentences, and (2) unsupervised sentence embedding
with unlabeled sentences, while a few of them adapt for both of the settings.

Supervised Approaches. To preserve the original information from sentences
as much as possible, most of the early works focus on the fusion of multi-grained
sentence features by CNNs or RNNs [8,16]. Since BERT [11] showed advanced
performance on a variety of NLP downstream tasks, some attempts of gener-
ating sentence embedding using pre-trained language models have been applied
to sentence-pair regression tasks. However, the native derived sentence repre-
sentations from BERT are proved to be collapsed. To make full use of pre-
trained language model in sentence-level tasks, Reimers et al. [25] first designed
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a sentence-BERT to derive semantically meaningful sentence embeddings. With
siamese and triplet network structures, sentence-BERT is able to tackle semantic
similarity search using cosine similarity.

Unsupervised Approaches. To further adapt sentence embeddings to down-
stream tasks like STS, a series of works are proposed for the anisotropy problem
brought by BERT-based sentence representations. Li et al. [19] proposed a flow-
based model by mapping embeddings to a standard Gaussian latent space. While
BERT-whitening introduced by Su et al. [27] is another effective way to enhance
the isotropy of sentence representations, which applies whitening operation to
BERT and achieves competitive results. Another line of works are based on the
distributional hypothesis (Mikolov et al. [22]), where context information of the
sentences is considered adequately. For instance, Skip-thought (Kiros et al. [18])
utilizes an encoder-decoder framework to sequentially predict the words of adja-
cent sentences. Instead of training a model to reconstruct the surface form of the
input sentence or its neighbors, Logeswaran et al. [20] designed quick thoughts
(QT) to predict the adjacent sentences by the current sentence.

2.2 Contrastive Learning

Contrastive learning is a kind of self-supervised technique to learn powerful
representation by distinguishing samples generated by the same object against
the different. Based on this intuition, approaches with contrastive learning are
enabled to achieve impressive results in unsupervised visual representation learn-
ing [9,14,15].

Recently, contrastive learning has been widely applied in NLP tasks for its
strong ability to train the model in an unsupervised manner. Zhang et al. [30]
proposed a CNN-based model IS-BERT, which constructs positive sample pairs
by maximizing the mutual information between the global sentence embedding
and its corresponding local contexts embeddings. Yan et al. [29] explored four
kinds of data augmentation methods for sentence-level contrastive learning in
both unsupervised and supervised settings. Instead of using a siamese network
with shared parameters, Carlsson et al. [6] employed an untied dual-encoder
framework to counter the task bias on final layers of models imposed by pre-
training objectives. To make full use of embeddings of different layers in BERT,
Kim et al. [17] designed a self-guided contrastive approach which fine-tunes the
BERT by making the [CLS] representation of the last layer close to its hid-
den states. SimCSE proposed by Gao et al. [12] applies dropout to contrastive
learning of sentence embeddings which acts as minimal data augmentation and
performs effectively.

3 The Design of AdCSE

In this section, we present the details of AdCSE. We first introduce the problem
formulation of unsupervised sentence embedding based on contrastive learning
in Sect. 3.1. Then the backbone network for embedding positive sentence pairs
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Fig. 2. Illustration of the proposed model AdCSE (Best viewed in color).

is presented in Sect. 3.2. In Sect. 3.3, we describe the negative adversaries for
training hard negatives in detail. At last, the learning objective and algorithm of
AdCSE are elaborated in Sect. 3.4. Figure 2 shows the architecture of AdCSE,
which includes a dual-encoder backbone network along with the negative adver-
saries. These two parts of AdCSE interact with each other adversarially with a
contrastive learning objective.

3.1 Problem Formulation

Given a set of input sentences X , for each sentence xi ∈ X , the goal of unsu-
pervised sentence embedding is to learn a representation hi ∈ R

d in embedding
space H. This process is abbreviated as F : X → H.

The goal of contrastive learning is to learn expressive representations by
pulling semantically similar neighbors together and pushing non-neighbors apart.
Specifically, for each sentence xi ∈ X , a function ϕ(·) is designed to map xi to a
semantically similar sentence x+

i = ϕ(xi) in order to compose a positive sentence
pair (xi, x

+
i ). We adopt the normalized temperature-scaled cross-entropy loss

(NT-Xent) as the contrastive objective. Denoting hi ∈ R
d and h+

i ∈ R
d as

the embeddings of xi and x+
i mapped by the encoder in AdCSE, the training

objective for (xi, x
+
i ) with a mini-batch of N sentence pairs is:

Li = − log
esim(hi,h

+
i )/τ

∑N
j=1 esim(hi,h

+
j )/τ

(1)

where τ represents the temperature hyperparameter to control the scale of sam-
ples and sim(·) calculates the cosine similarity of two embeddings.
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3.2 Backbone Network for Contrastive Learning

To employ NT-Xent as the training objective in an unsupervised manner, some
existing works construct the positive sample x+

i from the input sentence xi with
sentence-level data augmentation methods such as token shuffling, token cut-
off [29] and dropout masks [12]. These methods utilize two encoders with shared
parameters as their backbone to embed input sentences and their corresponding
enhancements respectively, therefore may suffer from the semantic inconsistency
issue between the input sentence and its positive. Instead, we follow He et al. [14]
to utilize an untied dual-encoder as our backbone networks. In this case, we take
advantage of two encoders with inconsistent parameters to distinguish between
xi and x+

i by themselves rather than an additional data augmentation process.
In other words, for a given sentence xi, we directly use the same sentence as its
positive sample x+

i .
In AdCSE, BERT is used for the two untied encoders: encoder q and encoder

p. θq and θp are denoted as their corresponding learnable parameters. Then
for a positive sentence pair (xi, x

+
i ), we apply two independent BERT encoders

followed by pooling layers to map the sentences to representations (hi,h+
i ):

hi = gθq
(fθq

(xi)) (2)

h+
i = gθp

(fθp
(x+

i )) (3)

where fθq
and fθp

are the [CLS] representations in the last layer of the two untied
BERT. gθq

and gθp
stand for two independent pooling layers which consist of

linear projection and the activation function tanh(·). Note that θq and θp are
updated in different ways in AdCSE for the dual-encoder to learn hi and h+

i

respectively from the inconsistent parameters. To this end, gradient descent is
adopted for optimizing θq while a momentum update is used to smooth the
evolving process of θp which is proved to be effective by He et al. [14] in the field
of computer vision. With k ∈ {1, 2, ...,K} where K is the total steps of training,
encoder parameters after the k-th step of training are denoted as θ

(k)
q and θ

(k)
p .

Given a momentum m, θp is updated as follows:

θ(k)p = mθ(k−1)
p + (1 − m)θ(k−1)

q (4)

3.3 Adversaries for Hard Negatives Training

Inspired by Hu et al. [15], we adopt adversarial training to unsupervised con-
struct hard negatives for contrastive sentence embedding. To challenge the abil-
ity of distinguishing between positives and negatives in the backbone network,
negative adversaries N = {nj |nj ∈ R

d, 1 ≤ j ≤ M} with M negatives are
randomly initialized at first. Then they keep up with hi in every sample batch
by iteratively updating the learnable parameters of itself θn through adversarial
training.

To be more specific, the backbone network tends to minimize the contrastive
loss by making hi close to h+

i while pulling apart hi and nj . In the meanwhile,
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Algorithm 1. Pseudocode of AdCSE
Input: X : training set; K: the total number of training steps; αq: learning rate of

encoder q; αn: learning rate of adversaries; m: momentum for updating encoder p;
τ : temprature

Output: θq: learning parameters of encoder q; θp: learning parameters of encoder p;
θn: learning parameters of negative adversaries

1: initialize θq, θp and θn;
2: shuffle samples in X ;
3: for k = 1 → K do
4: sample a batch X (k)

batch from X without repetition;

5: momentum update θ
(k)
p using Equation 4;

6: for each sample xi in batch X (k)
batch do

7: obtain query embedding hi by encoding xi with encoder q;
8: obtain positive embedding h+

i by encoding xi with encoder p;
9: end for

10: obtain embeddings of hard negatives in N ;
11: compute the contrastive loss L using Equation 5;
12: update θ

(k)
q using Equation 6;

13: update θ
(k)
n using Equation 7;

14: end for
15: return θq, θp and θn

the negative adversaries tend to confuse the discriminator with the updated hard
negatives by maximizing the contrastive loss. We believe the joint training of the
backbone network and negative adversaries benefits the performance of AdCSE
on evaluation.

3.4 Learning Objective and Algorithm

Based on the contrastive learning strategy, we present the following loss function
of AdCSE which is derived from Equation 1:

L = − 1
N

N∑

i=1

log
esim(hi,h

+
i )/τ

esim(hi,h
+
i )/τ +

∑M
j=1 esim(hi,nj)/τ

(5)

where N is the number of positive sample pairs in a mini-batch while M is the
number of adversaries for training hard negatives. Intuitively, the above objec-
tive tends to push the negative sample embedding nj closer towards the input
sentence embedding hi from the current minibatch. Therefore, harder negatives
will be trained by the adversaries with the parameters updated. In this way,
gradient decent and ascent are respectively applied to update parameters θq and
θn for adversarial training:
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θ(k)q = θ(k−1)
q − αq

∂L(θ(k−1)
q , θ

(k−1)
n )

∂θ
(k−1)
q

(6)

θ(k)n = θ(k−1)
n + αn

∂L(θ(k−1)
q , θ

(k−1)
n )

∂θ
(k−1)
n

(7)

where αq and αn are learning rates of encoder q and the negative adversaries
respectively. With the contrastive loss of the model L in Eq. 5, the adversarial
target mentioned in Sect. 3.3 is presented as:

θ�
q , θ�

n = arg min
θq

max
θn

L(θq, θn) (8)

where θ�
q and θ�

n are the parameters to equilibrate the two parts of AdCSE. We
train this model in an adversarial way in the hope that the best performance
of the model could be reached with the saddle point (θ�

q , θ�
n) for this minimax

problem. Based on the procedures above, we present the pseudo-code of AdCSE
in Algorithm 1.

4 Experiments

We trained AdCSE on unlabeled Wikipedia corpus and evaluated its perfor-
mance on 7 semantic textual similarity (STS) tasks. All experiments were con-
ducted on a server with an RTX3090 and 24 GB memory. The model AdCSE
was implemented by Python 3.6.2 with Pytorch 1.7.1 based on CUDA 11.0.

4.1 Experimental Setup

Datasets. Following Gao et al. [12], we used a million sentences randomly
sampled from Wikipedia for our self-supervised training1. For evaluation, 7 STS
tasks were utilized to conduct our experiments, including STS tasks 2012–2016
(STS12–STS16) (Agirre et al. [1–5], STS Benchmark (STS-B) (Cer et al. [7]) and
SICK- Relatedness (SICK-R) (Marelli et al. [21]). Each sample in these datasets
contains a pair of sentences together with a gold score between 0 and 5, indicating
their ground-truth semantic similarities. We obtained all these datasets through
the SentEval toolkit2. Please note that we only used development sets and test
sets of STS tasks for evaluation so that all of the STS experiments were fully
unsupervised.

Evaluation Metrics. We followed the evaluation metrics of SimCSE [12] to
measure the semantic similarity of sentences. For sentence pairs in the evalu-
ation set, we obtained their embeddings through F and calculated the set of

1 https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/
wiki1mforsimcse.txt.

2 https://github.com/facebookresearch/SentEval.

https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m for simcse.txt
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m for simcse.txt
https://github.com/facebookresearch/SentEval
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predicted similarities Ŷ by cosine(·) function. Denoting the given set of ground-
truth semantic scores as Y, the ranks of Ŷ and Y are respectively acquired with
the ranking function r(·). To assess how well the relationship between these two
variables are described using a monotonic function, the spearman correlation was
applied to evaluate the correlation between them, which is defined as follows:

ρ =
cov(r(Ŷ), r(Y))

σr(Ŷ)σr(Y)
(9)

where cov(·) calculates the covariance of two variables while σ represents the
standard deviations of them. The closer spearman correlation is to 1, the more
similar the predicted ranked similarities from AdCSE and the ranked ground-
truth are. To facilitate comparison with other baselines, we report ρ×100 as the
spearman correlation in the rest of this paper.

Baselines. In our experiments, several state-of-the-art unsupervised sentence
embedding methods were selected as baselines.

– GloVe embeddings [24] is an unsupervised learning algorithm to obtain
vector representations for words. By performing aggregated global word-word
co-occurrence statistics on a corpus, the method is able to generate sentence
embeddings using the averaging word vectors.

– BERT [11] is a pre-trained language model using self-attention mechanism.
Benifiting from both mask language model and next sentence prediction tasks,
the model applies high-quality embeddings for various NLP tasks in a self-
supervised manner.

– BERT-flow [19] maps embeddings to a standard Gaussian latent space to
solve the anisotropy problem for sentence representations.

– BERT-whitening [27] enhances the isotropy of sentence representations by
applying whitening operation to BERT.

– IS-BERT [30] is a CNN-based model which maximizes the mutual informa-
tion to optimize sentence embeddings.

– CT-BERT [6] utilizes a dual-encoder framework together with contrastive
loss to counter the task bias on final layers of models imposed by pre-training
objectives.

– ConSERT [29] explores four kinds of data augmentation methods for
sentence-level contrastive learning.

– SG-BERT [17] is a self-guided contrastive approach which fine-tunes the
BERT by making the [CLS] output of the last layer close to its hidden states.

– SimCSE [12] applies dropout inside BERT as the minimal sentence-level
data augmentation method in contrastive learning and acquires state-of-the-
art performance on STS tasks.
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Table 1. Evaluation results on the test set of STS tasks. We report the spearman
correlation ρ × 100 and bolded the best results. ♣: results from Reimers et al. [25];
♦: results from Gao et al. [12]; ♥: results from Zhang et al. [30]; ♠: results from
Yan et al. [29]; �: results from Kim et al. [17]; baseline results without labels were
implemented by ourselves.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe embeddings (avg.)♣ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32

BERTbase (cls before pooler) 21.53 32.11 21.28 37.89 44.24 20.29 42.42 31.39

BERTbase (first-last avg.) 39.69 59.37 49.67 66.03 66.19 53.88 62.06 56.70

BERTbase-flow
♦ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55

BERTbase-whitening♦ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28

IS-BERTbase
♥ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58

CT-BERTbase
♦ 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05

ConSERTbase
♠ 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74

SG-BERTbase
� 68.49 80.00 71.34 81.71 77.43 77.99 68.75 75.10

SimCSE-BERTbase (unsup.)♦ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

AdCSE-BERTbase (Ours) 70.52 84.10 74.18 82.15 78.42 78.32 73.16 77.26

Implementation Details. For pure BERT, we adopted model weights released
by Huggingface’s Transformers3 for evaluation. [CLS] output from BERT (cls
before pooler) and the average embedding of the first and last layers (first-last
avg.) are reported in this paper. For GloVe embeddings, we used averaging word
vectors as sentence embeddings and report the result from Reimers et al. [25]. For
BERT-flow, BERT-whitening and CT-BERT, we report the results reproduced
by Gao et al. [12] which share the same evaluation setting with us. For IS-BERT
and ConSERT, we report the results under unsupervised settings from their
original paper (Zhang et al. [30], Yan et al. [29]). In addition, results evaluated
by model named Contrastive (BT + SG-OPT) in Kim et al. [17] are reported as
our baseline for SG-BERT.

Our implementation is based on SimCSE (Gao et al. [12]) and AdCo (Hu
et al. [15])4. For AdCSE reported here, the max sequence length is set to 32
and dropout rate of both encoder q and encoder p are set to 0.1 just like the
BERT defaults. We set learning rates for encoder q and negative adversaries to
3e–5 and 3e–3 respectively. Momentums of encoder p and negative adversaries
are set to 0.995 and 0.9 respectively. The temperature τ of NT-Xent loss is set
to 0.05. Besides, both batch size and the number of negatives are set to 64.
We removed the projection layer in the evaluation phase to make the model
more generalizing. Following SimCSE (Gao et al. [12]), we evaluated on the
development set of STS-B every 125 steps during training and save the best
model checkpoint for testing.

3 https://github.com/huggingface/transformers.
4 Our code is publicly available at https://github.com/lirenhao1997/AdCSE.

https://github.com/huggingface/transformers
https://github.com/lirenhao1997/AdCSE.
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4.2 Main Results

Evaluation results on 7 STS tasks of AdCSE and other baselines are presented in
Table 1, where the best results are in bold. We have the following observations:

– AdCSE yielded the best performance on most of the STS tasks. Specifically, it
outperformed the previous state-of-the-art models on STS12, STS13, STS15,
STSB, and SICK-R tasks, while having a small gap to them on STS14 and
STS16. Taking STS12 as an example, AdCSE improved over the strongest
baseline by 3.1%. Overall, AdCSE improved the previous best-averaged spear-
man correlation from 76.25% to 77.26%. This verifies the significance of untied
dual-encoder networks and negative adversaries.

– In addition, compared with pure BERT, methods introducing contrastive
learning performed better on 7 STS tasks. We attribute the collapse of pure
BERT to their limitations on sentence embedding. The introduction of com-
parative learning can alleviate this collapse of pure BERT.

4.3 Ablation Study

To get deep insight into AdCSE and verify the validity of its two components
separately, we conducted an ablation study of AdCSE.

– w/o negative adversaries: We removed the negative adversaries in AdCSE
and only kept the dual-encoder backbone network for embedding. In this
case, only different in-batch samples were used as negatives for contrastive
learning.

– w/o untied dual-encoder: the untied dual-encoder backbone network was
replaced by two encoders with shared parameters while negative adversaries
were kept in this model.

– w/o both: a model without neither negative adversaries nor the untied dual-
encoder (instead, using two encoders with shared parameters as the backbone)
were evaluated as the baseline.

Table 2. Ablation study on AdCSE.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

AdCSE 70.52 84.10 74.18 82.15 78.42 78.32 73.16 77.26

- w/o negative adversaries 69.51 82.13 73.34 82.49 78.32 78.60 72.00 76.63

- w/o untied dual-encoder 67.75 77.22 70.01 80.46 77.59 76.48 68.86 74.05

- w/o both 66.02 79.83 69.90 76.42 75.54 74.33 70.07 73.16

With other settings held constantly, evaluation results of the ablated models
on test set of STS tasks are shown in Table 2. According to the results, we observe
that the best results of most evaluation tasks were obtained by complete AdCSE.
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Removal of the untied dual-encoder and the negative adversaries separately led
to a decrease in model performance, which indicates the contribution of both
parts of AdCSE. It is worth noting that, the negative adversaries had about
the same improvement in model performance with shared-parameter encoders
(73.16 → 74.05) and the untied dural-encoder (76.63 → 77.26) as backbone,
respectively, which verified the stability of adversarial training in AdCSE.

5 Further Analysis

We further validate AdCSE by analyzing sentence representations as well as the
real cases in semantic similarity comparison. Impacts of both batch size and
temperature are also investigated in this section.

5.1 Analysis of Embedding Space

To evaluate the quality of the embedding space of the model, we employed two
metrics proposed by Wang et el. [28] for contrastive learning which called align-
ment and uniformity. For the embedding process F , alignment 	align is defined
with the expected distance between positive pairs, while uniformity 	uniform is
the logarithm of the average pairwise Gaussian potential:

	align(F) � E(x,y)∼ppos

[‖F(x) − F(y)‖22
]

(10)

	uniform(F) � logE
x,y

i.i.d∼ pdata

[
e−2‖F(x)−F(y)‖2

2

]
(11)

where ppos denotes the distribution of positive pairs and pdata denotes the data
distribution. In Fig. 3, we showed alignment and uniformity of the sentence
representations from some sentence embedding methods, where the averaged
evaluation results on STS tasks were also reported along with the scatter points.

It can be seen that, embeddings from BERT encoders were better in align-
ment compared to the contrastive-based methods SimCSE and AdCSE, while
their uniformity was worse which is the main reason for their poor evalua-
tion results on STS tasks. The uniformity of AdCSE was slightly worse than
that of unsupervised SimCSE, while it had a better alignment. In general, the
contrastive learning effectively improves uniformity of pre-trained embeddings
whereas keeping a good alignment. Moreover, the addition of negative adversaries
further improves alignment, resulting in further model performance improve-
ments.

5.2 Case Study on Semantic Similarity

Besides the performance evaluated by spearman correlation, the discrimination
ability of models could be presented through a case study on semantic similarity
calculation in an intuition way. Table 3 shows real cases from the development set
of STS-B task where BERT, SimCSE and AdCSE were evaluated by measuring
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Fig. 3. Alignment and uniformity of some sentence embedding methods along with
their averaged evaluation results on STS tasks. For both �align and �uniform, the lower
the better.

Table 3. Case study on semantic similarity measuring, where GT is the ground truth
similarity relatedness of the sentence pair, scored in [0, 5]. The predicted scores of
models were obtained by mapping cosine similarities to the range of ground truth
score. For each sentence pair, we bolded the predicted score closest to its ground truth.

Sentence pair GT BERT SimCSE AdCSE

(First-last avg.) (unsup.)

#1 A person drops a camera down an escelator. 2.75 3.75 3.30 3.21

A man tosses a bag down an escalator.

#2 A woman is cutting some herbs. 2.80 4.22 3.49 3.26

A woman is chopping cilantro.

#3 Five kittens are eating out of five dishes. 2.75 4.33 3.83 3.10

Kittens are eating food on trays.

the cosine similarity of their output embeddings. Accroding to the results, BERT
was far from the ground truth while SimCSE and AdCSE were able to measure
the relatedness of sentence pairs more precisely. When it came to the hard case,
SimCSE failed to handle the sentence pairs with high word coverage, such as
(Five kittens are eating out of five dishes, Kittens are eating food on trays). In
contrast, AdCSE could deal with this situation better thanks to the adversarial
training with respect to hard negatives.

5.3 Influence of Batch Size and Temperature

We investigated the impact of batch size for training and temperature of L on
model performance. Where we reported the averaged spearman correlation of
the test set of all STS tasks as the model performance.
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Batch Size. In some previous works of contrastive learning [9], a larger batch
size may result in better performance. Thus, we experimented with different
batch sizes of AdCSE on STS tasks. Note that we adjusted the number of neg-
ative adversaries accroding to the batch size in these experiments. As shown in
Fig. 4(a), AdCSE benefited more from smaller batch sizes (32, 64, 96) compared
to SimCSE, and achieved its best performance when the batch size was set to
64. A possible reason for this phenomenon is that a larger batch size together
with more adversaries are in need of adjusting the corresponding learning rates
αq and αn, which are hard to control for adversarial training.

Temperature. The hyperparameter temperature τ in Eq. 5 is used to control
the smoothness of the distribution normalized by softmax operation. The dis-
tribution is smoothed by a large temperature while sharpened by a small one.
Thus, an appropriate temperature can help the model learn from hard nega-
tives by influencing its gradients during backpropagation. In our experiments,
we explored the influence of temperature to AdCSE. As Fig. 4(b) shows, the
best performance of AdCSE was reached with τ = 0.05. Either too small or too
large temperature affected the model’s ability to learn from negative samples.

Fig. 4. Performance analysis of batch size and temperature on STS tasks.

6 Conclusion

In this paper, we design a novel unsupervised sentence embedding method,
named AdCSE, which consists of an untied dual-encoder backbone network and
a group of negative adversaries. Employing contrastive learning as an objec-
tive, AdCSE is able to learn expressive sentence representations by adversarial
training. Evaluation results on 7 STS tasks indicate that AdCSE is competitive
compared with state-of-the-art methods. With ablation empirical evidence and
in-depth analysis, we show the importance of each part of AdCSE and validate
its effectiveness from different perspectives.
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In the future, we plan to take advantage of information from different layers
in BERT to improve the performance of AdCSE.
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