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Abstract. Knowledge graphs (KGs) are widely used in many real-world
applications, such as information retrieval, question answering system,
and personal recommendation. However, most KGs are suffering from
the incompleteness problem. To deal with the task of link prediction,
previous knowledge graph embedding methods require numerous refer-
ence instances for each relation. It is worth noting that most relations
in KGs have only a few reference instances available. Existing works for
few-shot link prediction evaluate the authenticity of triplets from a single
relation perspective. In this paper, we propose Hybrid Matching Network
(HMNet) for few-shot link prediction, evaluating triplets from entity and
relation two perspectives. At the entity-aware matching network, HMNet
uses attentive inductive embedding layer to aggregate entity features and
relation-aware topology, and then provides entity-aware score to imple-
ment first perspective evaluation. At the relation-aware matching net-
work, HMNet integrates feature attention mechanism to implement rela-
tion perspective evaluation. Experiments on two public datasets indicate
that HMNet achieves promising performance in few-shot link prediction.

Keywords: Few-shot link prediction · Hybrid matching network ·
Feature attention mechanism

1 Introduction

Knowledge graphs (KGs), collection of triplets (e.g., <head entity, relation, tail
entity>), have been widely used in a range of applications, such as question
answering [3], recommender system [29], and information retrieval [5]. A typical
large-scale KG, such as Freebase [1] or YAGO [18], contains billions of triplets.
However, they are suffering from the incompleteness problem [26]. For instance,
75% of person entities have no nationality information in Freebase [7]. As a
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Fig. 1. (a) The histogram of relation frequencies in NELL-One dataset; and (b) Illustra-
tion of an example of few-shot link prediction (Each edge denotes a reference instance).

result, it is hard to accurately answer questions like “How many users are from
the same country as Leonardo DiCaprio?”.

Clearly, it is time-consuming and labor intensive to deal with all incomplete
triplets manually. Thus automatically completing a knowledge graph, which is
also called link prediction, has become an important research task. There are
some studies [2,6,15,16,20,27] that have been proposed to predict missing val-
ues in incomplete triplets based on existing knowledge. The main idea of these
methods is consummating incomplete triplets via low-dimensional representa-
tions of entities and relations. However, the precondition of these methods solv-
ing the incompleteness problem is that each relation contains numerous reference
instances.

It is worth noting that the relation frequency in many KGs always shows a
long-tail distribution, as shown in Fig. 1(a). That is, a large portion of relations
have only a few reference instances [26]. The automatic completion of knowledge
graph under long-tail distribution is called few-shot link prediction task. In this
task, only a few reference instances are available for each relation. To better
understand the task, an example is shown in Fig. 1(b).

Example 1. In an existing KG, we need to perform link prediction on relation
“ActedBy”, that is, predicting tail entity from the candidate set given head entity
“Titanic” and relation “ActedBy”. Different from other relations, “ActedBy” has
only 5 reference instances. Therefore, there is a little information available for
it. Few-shot link prediction task focuses on these less informativeness relations.

There are some few-shot learning studies [4,26,28] for the above task. Specif-
ically, these methods first construct query triplets by splicing all candidate tail
entities with the given head entity, and then learn embeddings of query triplets
and representation of the relation of reference set. Finally, they match each query
triplet with the reference set to get a score. The goal is to make true triplets rank
high. Obviously, for each query triplet, these methods evaluate its authenticity
from a single relation perspective. In addition, most of existing works calculate
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the score for each triplet by applying dot product under the assumption that
all features of the relation contribute equally. Although these methods achieve
encouraging improvements, the performance remains unsatisfactory.

In this paper, we propose a novel model Hybrid Matching Network (HMNet)
for few-shot link prediction. It consists of an entity-aware matching network
and a relation-aware matching network. HMNet can evaluate the authenticity of
triplets from two perspectives:

– Entity perspective: The entity-aware matching network obtains the entity-
aware scores between different candidates and reference instances as the first
perspective evaluation.

– Relation perspective: The relation-aware matching network obtains the
relation-aware scores as the second perspective. It simultaneously weights
different features of relation with unequal contributions when calculating the
score.

The final prediction result of each triplet is acquired by combining these two
matching scores.

The contributions of this work are summarized as follows:

– designing a novel model HMNet, which employs hybrid matching and inte-
grates attention mechanism for few-shot link prediction.

– pointing out the importance of entity-aware matching, and providing an extra
perspective evaluation.

– evaluating HMNet model on two public datasets. Empirical results prove the
effectiveness of our proposed model HMNet over many competitive baselines.

The rest of the paper is organized as follows. We review related work in
Sect. 2, and formulate the problem of few-shot link prediction in Sect. 3. In
Sect. 4, we discuss the critical techniques of the proposed model HMNet. We
report a systematic empirical evaluation in Sect. 5, and conclude the paper in
Sect. 6.

2 Related Work

Our work is related to the existing research on knowledge graph embedding and
few-shot learning. We introduce the related work briefly below.

2.1 Knowledge Graph Embedding

To consummate incomplete triplets in KGs, it is vital to obtain embeddings of
entities and relations in the continuous low-dimensional space. Existing knowl-
edge graph embedding models can be divided into two main categories: distance
based models and bilinear based models.

Aiming to translate distance between entity pairs, Bordes et al. [2] first
proposed a translational distance based method TransE. It can obtain low-
dimensional embeddings by optimizing the distance function between triplets
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of the relational semantic. After that, in order to break through the limitation
of TransE in dealing with complex relations, several models have been proposed,
such as TransH (Wang et al. [24]) and TransR (Lin et al. [13]). Focused on ten-
sor decomposition, Nickel et al. [15] firstly designed a bilinear model RESCAL,
which can obtain relation embeddings by modeling the potential structure of
KGs. Later, DistMult proposed by Yang et al. [27] simplifies RESCAL by limit-
ing the relational matrix to the diagonal matrix. ComplEx introduced by Trouil-
lon et al. [20] extends DistMult into the complex space to better model reversible
relations in KGs.

The performance of above methods strongly relies on numerous reference
instances. In practical applications, these methods fail to achieve their expected
performance, due to the relation frequency in real datasets often has a long-tail
distribution.

2.2 Few-Shot Learning

Few-shot learning enables models to achieve impressive results with insuffi-
cient data. Existing approaches include learning a metric space over input fea-
tures [12,17,21,26], such that similar instances are close together while dissim-
ilar can be more easily differentiated. Recently, meta-learning is proposed to
solve few-shot learning problem. Specially, the meta-learner gradually learns
generic information (meta-knowledge) across tasks, and task-learner generalizes
to the new task based on meta-knowledge and specific information of the new
task [8,14,23]. Although few-shot learning has developed fast in recent years, it
mainly focus on computer vision applications and text classification.

To the best of our knowledge, the work proposed by Xiong et al. [26] is
the first research on few-shot link prediction. It’s a metric based model called
GMatching, which includes two components: neighbor encoder and matching
processor. The neighbor encoder uses entities’ one-hop neighbors to obtain their
embeddings. And then each relation representation is obtained by concatenat-
ing the embeddings of the head entity and tail entity. The matching proces-
sor matches each query instance with the reference set. Following the work of
GMatching [26], Zhang et al. [28] proposed a relation-aware heterogeneous neigh-
bor encoder based on the attention mechanism to learn entity embedding, and
used recurrent auto-encoder to aggregate information from reference instances.
Chen et al. [4] employed the relation-specific meta information transferring from
the reference set to query set and proposed the MetaR model.

Previous methods solve the few-shot link prediction task only considering
the relation perspective evaluation. This work is attempting to design a new
framework that can evaluate the authenticity of triplets from two perspectives
by leveraging valuable semantic information provided by the reference set.

3 Problem Definition

We start with some preliminaries. Let E and R be the sets of entities and rela-
tions, respectively. A knowledge graph is viewed as a graph G = {(h, r, t)} ⊆
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E × R × E , where h ∈ E and t ∈ E represent the head entity and tail entity,
respectively, and r ∈ R denotes a specific relation connecting h and t. The goal
of link prediction is to predict the missing values in incomplete triplets when
two elements are given. In this study, we focus on predicting the tail entity given
the head entity and query relation.

Under the few-shot learning setting, the model can be optimized on the set
of training tasks Ttrain = {Ti}M

i=1 and its generalization can be evaluated on the
set of test tasks Ttest = {Tj}N

j=1. Each task Ti =
{
Dref ,Dquery

}
corresponds

to a few-shot learning task with reference set Dref and query set Dquery. Each
task Tj ∈ Ttest is similar to Ti. According to the reference instances, the model
needs to make prediction for instances in the query set. It should be noted that
all tasks in testing are invisible in training, that is, Ttrain ∩ Ttest = ∅.

Definition 1 (Few-shot link prediction). Few-shot link prediction is defined
as a task to predict the true tail entity tj of the missing triplet (hj , r, ?), given
the reference set Dref

r = {(hi, ti) | (hi, r, ti) ∈ G} of relation r. K = |Dref
r | rep-

resents the number of triplets in reference set, which is a small number. The
set of all instances to be predicted of relation r is the query set Dquery

r ={
(hj , cj)|cj ∈ Chj ,r

}
, where Chj ,r is candidate tail entities set for a given head

entity hj and relation r (Chj ,r including the true tail entity tj).

In the few-shot link prediction task, R1 and R2 are sets of relations involved
in training and testing, respectively, and R1∩R2 = ∅. Each task corresponds to
a relation r ∈ R1 ∪ R2. Following the standard problem definition of work [26],
we assume that the method to solve the task can access a background graph G′,
where G′ = {(h, r, t)|(h, r, t) ∈ G ∧ r ∈ R \ (R1 ∪ R2)} .

4 The Design of HMNet

In this section, we present the details of HMNet. Figure 2 shows the frame-
work of HMNet, which includes two components: entity-aware matching network
and relation-aware matching network. Different from previous studies that focus
on single relation perspective evaluation, HMNet can evaluate the authentic-
ity of triplets from two perspectives. In Sect. 4.1, we describe the mechanism of
entity-aware matching network. Relation-aware matching network for evaluation
is described in Sect. 4.2.

4.1 Entity-Aware Matching Network

The objective of entity-aware matching network is to evaluate triplets from entity
perspective. Specifically, it assigns high scores for true tail entities of triplets
with tail entities’ information in the reference set. This component consists of
following two modules: attentive inductive embedding layer and entity-aware
score.
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Fig. 2. Illustration of the proposed HMNet model.

Attentive Inductive Embedding Layer (AI Embed Layer). Low dimen-
sional representations of nodes in the network have been proved useful in a
variety of graph analysis tasks [10]. Existing works show that it is beneficial
to use the relation-aware topology of an entity for link prediction task [26,30].
In addition, attention mechanism is widely used in recent deep learning studies
[25,28]. Different from existing few-shot link prediction works [26,28] only mod-
eling the relation-aware topology explicitly, HMNet employs AI Embed Layer
to obtain entity embedding. Since it simultaneously captures the relation-aware
topology and entity features, AI Embed Layer retains the advantages of previous
methods and fully aggregates the information provided by reference set.

Specifically, for any entity e, the set of link information with head entity e in
G′ denotes as Ie = {(r, t)|(e, r, t) ∈ G′}. Hence, entity e is assigned relation-aware
topology embedding as follows,

Fe = σ(
∑

(r,t)∈Ie

a(r,t)(W1[vr ⊕ vt]))

a(r,t) =
exp(P(W1[vr ⊕ vt]))∑

(r′,t′)∈Ie
exp(P(W1[vr′ ⊕ vt′ ]))

(1)

where ⊕ represents concatenation operation, vr ∈ R
d and vt ∈ R

d are pre-
trained embeddings of the relation r and tail entity t, respectively. d is the
embedding size. σ represents the Tanh activation function, and a(r,t) indicates
the weight of link information (r, t) when representing the entity e. P ∈ R

1×d

and W1 ∈ R
d×2d are trainable weight matrices.

Aggregating features of entity e with its relation-aware topology representa-
tion has been widely used in many tasks and achieves good performance [22,30].
In order to make full use of the information of reference set, AI Embed Layer
further combines them to get the entity embedding of e: ωe = W2ve + Fe,
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where ve is the pre-trained embedding of e and W2 ∈ R
d×d is a trainable weight

matrix.

Entity-Aware Score. The problem we tackle is that given a head entity and
a relation, we need to predict the tail entity. According to the information of
tail entities in the reference set, for each query instance (h′, t′), we can calculate
the entity-aware score to implement the first perspective evaluation. First, by
applying the AI Embed Layer to each tail entity t from Dref

r and (h′, t′), HMNet
gets the representation ωt of t. Then, HMNet summarizes output features of tail
entities in the reference set Dref

r as follows,

Eref =
1
K

∑K

i=1
ωti (2)

where ti ∈
{
t|(h, t) ∈ Dref

r

}
. Finally, HMNet calculates the entity-aware score

for (h′, t′). Without loss of generality, HMNet employs the following way to
calculate entity-aware score,

scoree−aware = Eref � ωt′ (3)

where � represents dot product.

4.2 Relation-Aware Matching Network

To implement the relation perspective evaluation, we design a relation-aware
matching network. In this section, we start by describing how to get the embed-
ding of corresponding relation based on reference set. And then we discuss how
to select more discriminative features to achieve more appropriate relation per-
spective evaluation.

Relation Encoder. HMNet assumes that each query instance expresses a spe-
cial relation, and then measures whether this relation is similar to the relation
expressed by reference set. HMNet employs the multilayer perceptron to encoder
entity pairs. It can obtain the relation embedding represented by entity pair (h, t)
as follows,

er←(h,t) = Wr(W[ωh ⊕ ωt]) + [ωh ⊕ ωt] (4)

where ωh and ωt are embeddings of the head entity and tail entity, respectively,
obtained by applying AI Embed Layer to h and t. Wr ∈ R

2d×4d and W ∈ R
4d×2d

are trainable weight matrices.
If the relation representation of each instance in Dref

r is far away from each
other, the resulting prototype vector of relation cannot capture common and
representative features. Here, we employ a network to perform information prop-
agation between reference instances, so that reference instances are closer in the
metric space. LSTM network [11] has achieved good performance in the NLP
field based on the long-distance information memory characteristic. But it can
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Fig. 3. The architecture of feature attention module.

only achieve unidirectional information propagation. Therefore, HMNet uses the
BiLSTM network to implement bidirectional information propagation.

Given relation representations of reference instances, calculated by Eq. 4,
BiLSTM performs information propagation on them to obtain the new rela-
tion representation sr(hi, ti) for each reference instance (hi, ti): sr(hi, ti) =
BiLSTM(er←(hi,ti)).

Relation-Aware Score. The works by Xiong et al. [26] and Zhang et al. [28]
use dot product to calculate the score for each query instance. These methods
believe that all features of relation contribute equally. However, when few-shot
reference instances are used to represent the corresponding relation, the obtained
information is limited and may contain noise information. It is hard to accurately
capture all unique features of the relation. Therefore, we should pay more atten-
tion to discriminative features. HMNet is required to measure the importance of
captured features when calculating score under the few-shot setting.

Since there are only a few reference instances for each relation, it is diffi-
cult to extract important features using feature engineering algorithms. Inspired
by the work of [9] on text classification, HMNet uses a feature attention mod-
ule to measure the importance of relation features, which enhances generality
applicability of the model.

The feature attention module uses the convolution operation to iteratively
update feature weights. The relation representation of each instance in the refer-
ence set is combined to form a matrix sK

r ∈ R
K×2d. Figure 3 shows the module

framework.
In order to aggregate the information of reference set when measuring the

importance of each feature, the size of all convolution kernels of this module is
set to K × 1. More specific steps are as follows:

Step 1: HMNet uses 16 convolution kernels to perform convolution operation on
sK

r , and sets stride to 1× 1. It pads the bias to participate in the calculation.
The output HK

r ∈ R
16×K×2d can be obtained.

Step 2: HMNet uses 32 convolution kernels to perform convolution operation
again. Channels are 16, other settings are the same as previous step. The
output is HK

r ∈ R
32×K×2d.
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Step 3: A convolution kernel with 32 channels is used, and stride is set to K ×1
to obtain feature attention weight OK

r ∈ R
1×1×2d for relation matching.

Algorithm 1. HMNet
Input: Training task set Ttrain; Background graph G′; The number of training steps

Nstep; Learning rate α; Margin distance γ; Hyperparameter β
Output: θ: Learning parameters of HMNet
1: Load the pre-trained embeddings;
2: Initialize θ;
3: for i = 1 → Nstep do
4: Shuffle the tasks in Ttrain;
5: for each task Tr in Ttrain do
6: Sample reference set Dref

r and positive query instances set Qr from Tr;
7: Construct negative query instances set Q−

r by replacing tail entities of Qr;
8: Compute the matching score for each triplet in Qr ∪ Q−

r using Eq.6;
9: Compute the loss L using Eq. 7;

10: θ ← Adam(∇θL, θ, α, β);
11: end for
12: end for
13: return θ;

After applying the relation encoder module, we obtain the relation represen-
tation of each reference instance in a metric space. Taking these representations
as input of the feature attention module, HMNet gets feature attention weights.
Like the tail entity information aggregation, HMNet uses the average of repre-
sentations of reference instances to get the prototype representation of relation r:
cr = 1

K

∑K
i=1 sr(hi, ti). Then HMNet reduces the dimensionality of the feature

attention weights, so that OK
r ∈ R

1×1×2d → OK
r ∈ R

2d. For each query instance
(h′, t′), HMNet uses OK

r to calculate the final relation-aware score:

scorer−aware = OK
r � (cr ⊗ er←(h′,t′)) (5)

where ⊗ denotes elements wise multiplication, and er←(h′,t′) represents the rela-
tion embedding between h′ and t′ which is calculated by Eq. 4.

For a query instance (h′, t′), the final score is:

Score = scorer−aware + β · scoree−aware (6)

where β is the hyperparameter indicating the weight of entity perspective eval-
uation.

4.3 Learning Objective and Algorithm

Given the background graph G′, and reference set Dref
r of relation r, we aim to

select the true tail entity tj from the candidate set for each hj . Based on this
learning objective, we rewrite the loss function following the definition of [28],

Lθ =
∑

r∈R1

∑

(hj ,tj)∈Qr

∑

(hj ,t−
j )∈Q−

r

[γ − Score(hj ,tj) + Score(hj ,t−
j )]+ (7)
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where Qr = {(hj , tj)|(hj , r, tj) ∈ G} is the set of positive query instances of
relation r, Q−

r =
{
(hj , t

−
j )|(hj , r, t

−
j ) /∈ G

}
is the set of negative query instances

of relation r, which is constructed by replacing tail entities of positive instances.
Lθ is standard hinge loss, and γ is margin distance.

Based on the discussions above, we present the pseudo-code of HMNet in
Algorithm 1.

5 Experiments

We evaluate the performance of HMNet on two public datasets. All experiments
are conducted on a server with an RTX2080 Ti and 11 GB memory. The model
HMNet is implemented by Python 3.6 based on Pytorch 1.5.1.

5.1 Experimental Setup

Datasets: 1) NELL-One1 consists of 181,109 triplets, 68,545 entities, and 358
relations. 2) Wiki-One, which is a subset of Wikidata2, consists of 5,829,240
triplets, 4,838,244 entities, and 822 relations. Following the experimental set-
tings of work [26], we select relations with less than 500 but more than 50
triplets as few-shot link prediction tasks. Table 1 shows the statistics of two
datasets (#Training/Validation/Test denotes the number of relations for train-
ing/validation/testing).

Table 1. Statistics of the datasets.

Dataset #Entities #Relations #Triplets #Training/Validation/Test

NELL-One 68,545 358 181,109 51/5/11

Wiki-One 4,838,244 822 5,829,240 133/16/34

Baselines: In our experiments, several related methods are selected as baselines.

– Knowledge graph embedding methods. Knowledge graph embedding
methods map relations and entities into continuous low-dimensional space.
TransE [2] is a translational distance based method which defines the score
function as fr(h, t) = −‖h + r − t‖1/2. RESCAL [15] is a bilinear based
method. This method represents each relation as a full rank matrix Mr.
DistMult [27] uses a bilinear score function to compute scores of knowledge
triplets. ComplEx [20] extends DistMult to the complex space instead of
real-valued ones.

1 http://rtw.ml.cmu.edu/rtw/.
2 https://test.wikidata.org.

http://rtw.ml.cmu.edu/rtw/
https://test.wikidata.org


HMNet: Hybrid Matching Network for Few-Shot Link Prediction 317

– Few-shot learning methods. These models use a background graph G′

to get the pre-trained embeddings of entities and learn a representation
of relation. Then they adopt different score functions to get the ranking.
GMatching [26] tackles the problem by enhancing the representation of
entity and learning a relation metric space. MetaR [4] proposes relation-
meta and gradient-meta two kinds of relation-specific meta information to
solve this problem. FSRL [28] extends GMatching [26], from one-shot link
prediction to few-shot link prediction.

Evaluation Metrics: Two metrics Hits@k and MRR are applied to evaluate
the performance of the proposed model. Hits@k is the proportion of the correct
tail entities in the top-k of all candidate entities. MRR (Mean Reciprocal Rank)
is the average of all correct tail entities reciprocal ranking.

Implementation Details: For TransE, ComplEx, and DistMult, the imple-
mentation3 released by Sun et al. [19] is adopted in our experiments. For
RESCAL, we implement it by ourselves. For the above knowledge graph embed-
ding methods, all the triplets from G′ and training set are utilized for training.
In addition, for each relation, K triplets from validation and test sets are chosen
for training. In iterative training, only one negative sample is constructed for
each true triplet in the batch task by replacing tail entity. Following GMatch-
ing [26], the embedding dimension is set to 100 and 50 for NELL-One and Wiki-
One datasets, respectively. The maximum number of neighbors is set to 50 and
margin distance is set to 5 for two datasets. The pre-trained embedding is set
to ComplEx for all models. During the training procedure, HMNet uses Adam
with the initial learning rate as 0.0001 to update parameters. The size of the
hidden layer in the BiLSTM structure is set to 2d, where d is the embedding
dimension of datasets. The β is set to 0.5 for both datasets. All learning param-
eters are randomly initialized. For GMatching, we employ max/mean pooling
(denoted as MaxP/MeanP) to obtain the prototype vector of the relation in ref-
erence set. Following FSRL [28], the maximum score between a query instance
and K instances in the reference set is also considered as the final ranking score
of this query instance (denoted as Max). For MetaR, we use pre-trained mode
to maintain a consistent experimental environment. The results reported in the
paper [28] are under the setting where the maximum size of the candidate set is
1000. Here, entities that satisfy type constraints [26] are added to the candidate
set, where all candidates are considered in our work. In the absence of specific
knowledge to choose otherwise, K is set to 5.

5.2 Results

The performance comparison results on two datasets are presented in Table 2,
where the best results are shown in bold. We have following observations:

3 https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding.

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
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Table 2. Link prediction results on two datasets. Results with * are reported in [26].

Model NELL-One Wiki-One

MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

TransE [2] .131 .220 .182 .081 .144 .204 .172 .108

RESCAL [15] .033 .055 .038 .019 .060 .112 .081 .029

DistMult [27] .051 .134 .081 .010 .027 .058 .035 .010

ComplEx* [20] .200 .325 .269 .133 .033 .066 .046 .015

GMatching (MaxP) [26] .189 .301 .225 .136 .134 .287 .181 .066

GMatching* (MeanP) [26] .201 .311 .264 .143 .242 .419 .318 .163

GMatching (Max) [26] .190 .305 .247 .123 .125 .251 .167 .065

MetaR [4] .164 .320 .252 .083 .220 .347 .287 .158

FSRL [28] .184 .341 .248 .105 .126 .242 .154 .068

HMNet .209 .364 .296 .129 .294 .423 .353 .230

– HMNet yields the best performance under most evaluation metrics. Taking
Hits@10 and MRR as examples, HMNet improves over the strongest baselines
w.r.t. Hits@10 by 6.74% in NELL-One and w.r.t. MRR by 21.48% in Wiki-
One, respectively. In particular, HMNet yields 41.1% higher performance
w.r.t. Hits@1 than GMatching on Wiki-One. This verifies the significance
of entity perspective evaluation. Moreover, compared with the fixed weights
used in the other three few-shot learning methods, HMNet verifies the effec-
tiveness of the feature attention mechanism.

– It can be seen that graph embedding methods work poorly on relations that
have only a few triplets to train. It demonstrates the limitations of previous
graph embedding methods for few-shot link prediction.

5.3 Further Analysis

Impact of Few-Shot Size: We conduct experiments to analyze the impact
of few-shot size settings with K ∈ {3, 4, 5, 6}. The test results on NELL-One of
different methods measured using Hits@k and MRR are shown in Fig. 4. HMNet
outperforms other baseline methods on most evaluation metrics in different few-
shot size settings, indicating its stability on few-shot link prediction. In addi-
tion, the performance of most methods does not improve with the few-shot size
increasing in this experimental setting. The reason may be that unrepresentative
instances are added to the reference set, which are far away from the prototype
representation of the relation.

Impact of Embedding Methods: To observe the impact of different embed-
ding methods for relation representation, we compare the performance between
our model HMNet and the latest method FSRL [28]. Figure 5 shows the results
of HMNet and FSRL on NELL-One dataset. We can see that FSRL obtains the
best performance when using ComplEx as the embedding method. Compared
with FSRL, HMNet achieves better performance in four different embedding
method settings. It further indicates the superior performance of our model in
terms of few-shot link prediction in KGs.
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Fig. 4. Impact of few-shot size.

Table 3. Impact of hyperparameter β.

Hyperparameter β MRR Hits@10 Hits@5 Hits@1

0.2 .184 .325 .242 .112

0.5 .209 .364 .296 .129

1.0 .184 .356 .233 .111

On Parameter Selection for HMNet: We investigate the impact of different
entity-aware score weights β on the few-shot link prediction performance. We
conduct the experiment with hyperparameter β ∈ {0.2, 0.5, 1.0} while other
factors are fixed. The results on NELL-One are reported in Table 3 with the best
results bold. HMNet reaches the best performance with β = 0.5. Moreover, the
performance of our model first improves and then declines when β increases. The
reason is that the entities matching can provide a valuable evaluation indicator.
However, when β is larger than 0.5, it greatly reduces the influence of relation
perspective evaluation which harms the hybrid matching performance.
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Fig. 5. Impact of embedding methods.

5.4 Ablation Study

HMNet consists of two components, and each component contains different mod-
ules. To get deep insight into HMNet, we analyze the contribution of each
module. Specifically, we remove the entity-aware score module and only keep
the AI Embed Layer (denoted as HMNetw/oEntityMatching). For the relation
encoder module, we remove the BiLSTM network and only keep the multi-
layer perceptron to get the representation of relation of each instance (denoted
as HMNetw/oBiLSTM). To explore the impact of score function selection, we
remove the feature attention module (denoted as HMNetw/oCNN). The parame-
ters follow the above settings, and the results on NELL-One dataset are reported
in Table 4 with the best results bold. Several observations from these results are
worth noting:

– The best results of most evaluation metrics on the NELL-One dataset are
obtained by complete HMNet.

– Removing the entity-aware score or CNN from the complete model causes
the most significant performance drop on all evaluation metrics, showing the
crucial role of entity perspective evaluation and the feature attention module
in general.

– Removing the BiLSTM causes performance drop on some evaluation met-
rics but not all. All the components of HMNet together lead to the robust
performance of our approach.
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Table 4. Results of ablation study on NELL-One.

Model MRR Hits@10 Hits@5 Hits@1

HMNetw/oEntityMatching .189 .326 .256 .119

HMNetw/oBiLSTM .205 .352 .277 .134

HMNetw/oCNN .193 .348 .263 .120

HMNet .209 .364 .296 .129

6 Conclusion

In this paper, we propose a novel few-shot link prediction model, named HMNet.
HMNet with entity-aware matching network and relation-aware matching net-
work can evaluate the authenticity of triplets from two different perspectives.
The comprehensive results on two public datasets indicate that HMNet can
obtain more superior performance than state-of-the-art baseline methods. With
in-depth analysis and ablation empirical evidence, we show the effectiveness and
importance of each module of the HMNet model.

In the future, we will study the impact of different entity feature aggregation
methods on experimental performance. Furthermore, we plan to integrate extra
information (e.g., text information) to improve performance.
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